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We explore methods to evaluate distributional differences in spatial point data sets. We used spatial point 
samples formed with two different sampling algorithms, as well as random samples from the same data set, 
as the basis for our comparison. Both visualization and quantitative techniques are described as a basis 
for comparing the spatial distributions of samples generated from the different sampling methods. Although 
the described quantitative methods show promise for future analysis, we were able to detect differences in 
our sampling algorithms using visualization methods alone. Visualizing the spatial density distribution along 
each of our axes allowed us to detect a distributional difference between the first sampling algorithm and the 
samples generated from the second sampling algorithm and the random samples. We hope to use spatial 
distributional functions and the properties of Voronoi and Delaunay tessellations to detect finer quantitative 
differences between the different samples in the future.

Visualization and analysis methods are required to investigate 
massive datasets being collected or generated by simulations. For 

example, because cosmology particle data sets generated from both 
sky surveys and simulations have increased exponentially in size in 
the last decade, scalable methods to visualize and store these massive 
particle data sets are increasingly important [1]. Sampling the data 
to scale down the size of a data set presents a potentially scalable 
method to handle ever-increasing amounts of information. In addition 
to reducing the computational burden of a data set, sampling has the 
added advantage of retaining the original data points, whereas other 
methods often rely on compression or averaging. Here we describe 
some techniques we have investigated to evaluate different sampling 
algorithms for spatial point data.

We investigate two algorithms, referred to as algorithms A and B, which 
were written to be more computationally efficient than random sampling. 
Although based on the idea of random sampling, algorithms A and B 
introduce structure into the sampling process. Before samples are 
taken, algorithms A and B break the sample space into equal-density 
bins with each bin containing the same number of data points. The bins 
are then randomly sampled, with the same number of samples taken 
from each bin. As the desired sample resolution increases, increasing 
numbers of bins are used. Sampling algorithm A uses a bottom-up 
approach to decrease the sample resolution as it approaches the desired 
resolution, while sampling algorithm B uses a top-down approach to 
increase the resolution as it samples. Because the properties of random 

samples are relatively well known, we use a random sample of the data 
as a basis for evaluating the two algorithms on their statistical and 
visual properties. These comparisons formed our basis of evaluation for 
the sampling algorithms, as the algorithms were written to produce 
results similar to a pure random sample. We used thirty samples 
produced by each of the two algorithms, as well as thirty random 
samples for our primary analysis. Each sample contains 3D coordinate 
information for each data particle’s location, as well as each particle’s 
velocity in 3D. We assume that each particle has an identical mass. 
Using the techniques below, we detected substantial differences between 
samples formed with sampling algorithm A and the samples formed 
through a random sampling process.

Our two primary tools for investigating the samples formed from each 
algorithm were different visualizations of the samples and quantitative 
measurements of the samples’ nonparametric properties. Because each 
sample contains in excess of 32 thousand points, basic 3D maps of the 
particle locations show no discernable difference between the random 
samples and samples formed with algorithms A and B. The maps do, 
however, display a clear indication of heavy clustering in some areas, 
prompting us to investigate the different density maps and 
representations of the data (Fig. 1). Although kernel density maps were 
not very helpful in distinguishing the samples, density curves along each 
visual and velocity axis were informative.  For all samples produced with 
algorithms A and B, the density curves of the spatial locations of the 
points along the y- and z-axis, as well as the velocity density curves in 

Fig. 1. A 3D map of the data point 
locations in one of our random samples.

Fig. 2. The density along the x-axis for 
algorithm A (solid black line) compared 
to the density along the x-axis for 
algorithm B and the random samples 
(red dotted and blue solid lines). Notice 
the densities of algorithm B and the 
random samples appear almost identical.
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all three dimensions appeared to lie right on top of the density 
curves from the random samples. The density curve along the 
spatial locations of points along the x-axis from sampling algorithm 
A, however, was visually distinct from the density curves generated 
from sampling algorithm B and the random samples (Fig. 2). Such a 
substantial deviation of sampling algorithm A from sampling 
algorithm B and the random samples seemed to indicate that 
algorithm A was dividing the x-axis in a way that distorted the 
density along that dimension.

In addition to the visualization techniques, we investigated several 
quantitative measures to aid our analysis of the different 
algorithms. Many of the quantitative measures used were compared 
to the Poisson point process, which displays random, independent 
scattering of points. Deviations from the Poisson characteristics 

can indicate either clustering or repulsion of points [2]. Because of our 
heavy clustering it is clear our samples differ from the Poisson process; 
however, we would like to investigate whether that difference changes 
between the algorithms and the random samples. In our future analysis, 
we would like to compare the distributions of several functions, the 
cumulative distribution of the empty space around a point (the F 
function), the cumulative distribution of the distance r of the nearest 
neighbor to a point (the G function), the ratio of the F and G functions 
[3], and the probability of finding two points within a distance r of each 
other (g) [4], from each of our sampling algorithms. The distributions 
of the four functions generated from one of our random samples are 
shown in Fig. 3 for the random sample. As expected, the functional 
characteristics from all three sample algorithms differed significantly 
from the Poisson process. We hope the comparison of the functions 
generated from the three algorithms will provide further insight into 
the quantitative similarities or differences between the sampling 
methods. 

In addition to the techniques used above, several techniques utilizing 
the properties of the Delaunay and Voronoi tessellations seem 

promising for future analysis. Although often considered a visualization 
tool, the Voronoi and Delaunay tessellations can also provide 
quantitative information to our sample analysis. The two tessellation 
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Fig. 3. The F, G, J, and K functions for 
one of our random samples. The blue 
dashed line represents the theoretical 
value for a Poisson process. All four 
functions show clear deviations from the 
Poisson process, correctly indicating 
that our sample contains clustering.

Fig. 4. Voronoi (bottom left) and 
Delaunay (bottom right) tessellations 
formed from a 2D section of one 
of the random samples (top).

techniques are each others’ analogue, where the Voronoi tessellation 
divides the sample space into cells each containing one data point as its 
nucleus and the Delaunay tessellation connects the nuclei of these cells 
(Fig. 4). The geometrical properties of the Voronoi tessellation, such as 
the distribution of the number of vertices per cell, the volume of the cell 
and the surface area of the cell can be measured quantitatively. These 
quantitative measures have the potential to provide information on the 
clustering and voids of the point pattern from which the Voronoi 
tessellation was formed [5]. With the Delaunay tessellation, a Delaunay 
Tessellation Field Estimator (DTFE) can be constructed as a means to 
transform the discrete points contained in the sample into a continuous 
field [6]. Because the Delaunay tessellation is so sensitive to local point 
densities, the DTFE can be used as a local density estimate [7].  The 
density estimate could then be used to further characterize the clusters 
and voids present in each sample.

Through early analysis and visualization, we were able to detect a 
difference in the way algorithm A distributes sampling along the x-axis. 
We hope that with continued analysis using our proposed quantitative 
techniques we will be able to detect finer differences in the distributions 
of samples from simulations.


